Delayed entry into HIV medical care after HIV diagnosis: Risk factors and research methods

Samuel M. Jennessa, Julie E. Myersbc, Alan Neaigusd, Julie Lulekd, Michael Navejasd and Shavvy Raj-Singhd

aDepartment of Epidemiology, University of Washington, Seattle, USA; bDivision of Infectious Diseases, Columbia University Medical Center, New York, USA; cDepartment of Epidemiology, Columbia University, New York, USA; dHIV Epidemiology Program, New York City Department of Health and Mental Hygiene, New York, USA

(Received 31 May 2011; final version received 9 January 2012)

Timely linkage to HIV medical care has the potential to improve individual health outcomes and prevent secondary HIV transmission. Recent research found that estimates of delayed care entry varied by study design, with higher estimates among studies using only HIV case surveillance data. In this analysis, we compared the prevalence and risk factors for care delay using data from two studies with different designs conducted in New York City. The Medical Monitoring Project (MMP) used a retrospective design to estimate historical delay among persons currently receiving care, while the Never in Care (NIC) study used a prospective design to estimate current delay status among persons who were care-naive at baseline. Of 513 MMP subjects in 2007–2008, 23% had delayed care entry greater than three months after diagnosis. Independent risk factors for care delay were earlier year of diagnosis and testing positive in a nonmedical environment. Of 28 NIC subjects in 2008–2010, over half had tested positive in a nonmedical environment. The primary-stated reasons for delay were the same in both studies: denial of HIV status and lack of perceived need for medical care. The strengths and weaknesses of surveillance only, prospective, and retrospective study designs with respect to investigating this issue are explored. Future studies and interventions should be mindful of the common selection biases and measurement limitations with each design. A triangulation of estimates from varying designs is suggested for accurately measuring care linkage efforts over time.

Keywords: HIV/AIDS; medical care; initiation; linkage; delay

Introduction

Timely linkage to HIV medical care following HIV diagnosis is necessary to monitor clinical status of HIV disease progression and to derive maximal benefit from antiretroviral therapy (ART) and other interventions (Metsch et al., 2008). Presentation for and retention in care is a precondition for initiation of and adherence to ART, which reduces risk of secondary transmission because of suppressed HIV viral load (VL) (Quinn et al., 2000). On a population scale, a universal “test and treat” approach has the potential to reduce the scope of the HIV epidemic (Dodd, Garnett, & Hallett, 2010). For these reasons, the US National HIV/AIDS Strategy establishes a benchmark that 85% of persons be linked to care within three months of diagnosis (Holtgrave, 2010). However, a recent meta-analysis found that 28% of persons had delayed entering care more than three months after diagnosis (Marks, Gardner, Craw, & Crepaz, 2010).

Broadly, three study designs have been used to investigate delayed care entry: surveillance-based, retrospective, and prospective. Surveillance-based studies use HIV clinical test reports (usually CD4 cell counts or VL tests) as proxy indicators for care entry. One such study found that care delayers in New York City (NYC) were more likely to be injection drug users (IDU) and diagnosed in nonmedical environments (Torian, Wiewel, Liu, Sackoff, & Frieden, 2008). Retrospective studies investigate historical care delay among persons currently in care; one example is the HIV Cost and Services Utilization Study, among the first to identify the racial disparities in care linkage (Shapiro et al., 1999). Finally, prospective studies investigate the population who are care-naive at baseline. This is the least commonly used design, often because study recruitment is complicated by subjects' lack of connection to services (Molitor et al., 2006). One prospective study in Alabama found that scheduling lag for the first care visit increased the likelihood of delayed care (Mugavero et al., 2007).

Choice of study design can influence outcomes in important ways. Higher estimates of delayed care entry have been found in surveillance studies (Marks et al., 2010), for example, in part because surveillance test records may not always be accurate indicators of clinical evaluations (Christopoulos, Das, & Colfax, 2011). Retrospective studies, often nested within large-scale studies of those receiving care, may

*Corresponding author. Email: sjenness@uw.edu

ISSN 0954-0121 print/ISSN 1360-0451 online © 2012 Taylor & Francis
http://dx.doi.org/10.1080/09540121.2012.656569
http://www.tandfonline.com
underestimate delay by excluding the care-naive and those who have died (Shapiro et al., 1999). Our objective was to study the prevalence and correlates of delayed care entry through the lens of study design. We examined the sociodemographic and psychosocial factors associated with delay using data from two studies with different designs conducted in NYC. Finally, we qualitatively assessed the strengths and weaknesses of all three designs.

Methods

Medical Monitoring Project (MMP) procedures

Medical Monitoring Project is a cross-sectional, multi-stage cluster designed study of adults receiving HIV medical care. Its background and methods have been described (McNaghten et al., 2007). MMP used a probability-proportional-to-size sampling design with three selection stages. First, health jurisdictions in the US (states and cities) were randomly selected as target areas based on their underlying AIDS prevalence; NYC was among those selected. Second, HIV medical facilities in NYC were randomly selected to participate, with facility selection probability a function of HIV patient caseload. Laboratory tests (CD4 cell count and VL) and supplemental data from HIV surveillance were used to identify facilities, which were then contacted to determine their caseload. Of 489 facilities identified and confirmed for the 2007 and 2008 study cycles, 34 were selected, with 25 and 21 participating in 2007 and 2008, respectively. Third, patients within participating facilities were randomly selected, with 800 patients selected in 2007 and 752 in 2008. MMP field staff then worked with facility staff to contact and recruit selected patients into the study.

MMP eligibility criteria were current HIV infection, adulthood, and receipt of care in the selected medical facility between January and April of the cycle calendar year. Data were collected in two annual, discrete data collection cycles (2007 and 2008), and the datasets were then merged. Patients could be selected and participate in both cycles, but duplicates (n = 15), determined by self-report and matching on identifiers, were removed from the merged data-set. Subjects received $40 public transit cards for their time. Study protocols were approved by the institutional review boards of the DOHMH and participating facilities.

Never in Care (NIC) study procedures

Never in Care is a prospective cohort study in five jurisdictions with one baseline subject encounter and follow-up through surveillance records to assess care entry over time. Only baseline data are presented here. Its background and methods have been described (Fagan, Bertolli, & McNaghten, 2010). NIC first used surveillance data for initial sampling. Newly diagnosed persons in the NYC HIV surveillance registry were followed up for three months to assess their care entry status, using the proxy of having a CD4 or VL test result in a month subsequent to the diagnosis month. It is standard to order these tests upon initiation of care, and only physicians may order them. Persons with no such test for three months within their diagnosis were entered onto a sampling frame from which a random sample was drawn. Persons on that sample were contacted and asked to participate in the study. Sampling occurred on a monthly basis between March 2008 and August 2010, representing individuals diagnosed from January 2006 to June 2010.

NIC eligibility criteria were HIV diagnosis for at least three months, non-receipt of HIV medical care, adulthood, and NYC residence. When surveillance data obtained after the initial sampling indicated care entry, persons were reclassified as ineligible and removed from the sample (i.e., care entry at any time before interview was a final exclusion criterion for baseline interview). Study subjects who were interviewed received $25–$50 for their time. Study protocols were approved by the DOHMH institutional review board.

Measures

MMP and NIC both involved a standardized, structured interview administered by trained field staff in private settings. Sociodemographic and behavioral risk questions were worded similarly in the two studies. For three variables (location of the diagnostic HIV-positive test, reason for testing, and reasons for delayed care entry), we combined response options with overlapping themes into composite categories for analysis. Several of the structured “reasons for delayed care entry” response options were worded slightly differently, and while subjects in both studies were invited to provide more than one response, NIC subjects were more likely to.

For NIC, the main outcome (delayed care entry) was an eligibility criterion. For MMP, delay was calculated with self-reported dates of HIV diagnosis (month and year) and first care (month and year). If the difference was greater than three months, persons were categorized as delayers. Sixty subjects were missing data on month and year of diagnosis or care entry and 19 were missing only month of diagnosis or care entry. Delay status could not be
calculated for the former, but we extrapolate care delay among the latter for persons entering care in a year subsequent to the diagnosis year.

Statistical analysis

First, we estimated the prevalence and risk factors for care delay in the MMP sample, using chi-square tests to determine statistically significant differences and logistic regression to estimate odds ratios (OR) and confidence intervals (CIs). Differences between those with missing data on delay status were compared to those with complete data. To determine factors independently associated with care delay, we entered all variables significant in bivariate analysis (at \(p < 0.10 \)) into a multiple logistic regression model with backwards elimination of non-significant (at \(p < 0.05 \)) variables. Finally, we generated descriptive statistics for the NIC sample and compared them to the MMP subsample who delayed on the main sociodemographic, risk factor, and psychosocial variables. Analysis was conducted in SAS 9.2 (SAS Institutes, Cary, NC).

Results

For MMP, of the 800 persons selected in 2007, 279 (35%) completed the study; of 752 persons selected in 2008, 249 (33%) completed the study, yielding an analytic sample of 234 when duplicates were removed. Complete data on care delay status were available for 434 of the 513 total subjects, and data were extrapolated for 19 others, for an analytic sample of 453. Subjects with missing delay data were more likely to be diagnosed before 1996 (9.8% vs. 2.2%; \(p < 0.01 \)) and to identify as heterosexual (91.5% vs. 85.0%; \(p < 0.02 \)).

As Table 1 shows, 72% were male, most were black (42%) or Hispanic (36%), and nearly three quarters (72%) were under the age of 40 at HIV diagnosis. Most were diagnosed after the introduction of highly-active ART (HAART) in 1996 (59%). Nearly a quarter (22%) were born in a foreign country, and 53% had some college education. Half (48%) identified as heterosexual, and 19% had ever injected illicit drugs. Over half (51%) had their first HIV-positive test in a nonmedical environment; the leading reasons for that test were routine offer (57%) and perceived high risk (29%).

The most commonly cited reasons for delayed care entry in MMP (Table 2) were not wanting to think about being HIV-positive (39%) or feeling good and not perceiving a need to enter care (17%). Other responses included difficulties finding or accessing care (9%), disbelief of their test result (8%), and current drinking or drug use (7%). In NIC, the most common reasons were not wanting to think about being HIV-positive (71%), feeling good and not perceive a need to enter care (68%), and not wanting to discuss their HIV result (54%). Additionally, 39% did not believe their test result, 36% did not have health insurance, and 29% had difficulties finding or accessing care.

Discussion

Delayed entry into HIV medical care is a persistent problem, and may only escalate if HIV testing campaigns are not coupled with similar efforts for care linkage and retention (Mayer, 2011). From the MMP study, we found that nearly one-quarter of persons currently in care had delayed, consistent
with previous estimates (Marks et al., 2010). Independent risk factors for delay were diagnostic year and a nonmedical testing environment. NIC subjects differed from care delayers in MMP with respect to many factors, but the primary psychosocial reasons for delay were the same for both studies.

Risk factors for delay

In multivariate analysis, there were two independent risk factors for delay. First, each subsequent diagnostic year was associated with a 10% decreased likelihood of delay. This is consistent with a recent meta-analysis finding that estimates for delayed care entry were lower in studies collecting data after 2002.
This temporal trend may reflect increasing efforts in linking newly diagnosed persons to care (Craw et al., 2008; Purcell et al., 2007). NYC surveillance data suggest that care delay persists but is improving: 64% of persons diagnosed with HIV in 2003 had entered care within three months of diagnosis (Torian et al., 2008), but this climbed to 79% among those diagnosed in 2006 (Bertolli et al., in press). However, the trend result may also reflect a bias in MMP (i.e., sampling subjects only in care), because persons who are care-naive (more likely to be recently diagnosed) or have died (with differential attrition of care delayers through mortality) are excluded.

The second risk factor was testing in nonmedical environments, such as community-based organizations, health fairs, and other settings where HIV care is not provided. Our finding confirms the link between testing in medical settings and timely linkage to care (Torian et al., 2008; Zetola et al., 2009). Diagnostic testing in a medical environment benefits from the capacity to immediately establish care with newly diagnosed persons (Mugavero, Norton, & Saag, 2011). Therefore, novel testing strategies successful at identifying undiagnosed persons through social networks and at social venues require equally novel methods to link those newly diagnosed to care (Jenness et al., 2009).

Several differences emerged when comparing the NIC sample with the MMP subsample who delayed care. In NIC, we found a higher proportion who were black, older, foreign-born, less educated, heterosexual, and had never injected drugs. One reason for the differences may be that all NIC subjects were care-naive and diagnosed in 2006 or later, whereas all MMP subjects were in care and only 9% were diagnosed in 2006 or later. Also, recruitment challenges in NIC resulted in a low response rate and a sample that is unlikely to be representative, given the potential for selection bias. However, as suggested below, it is necessary to be mindful of potential recruitment bias at the study design stage.

Psychosocial barriers to care

Studies using surveillance or medical records as data sources are often unable to examine psychosocial barriers to care (Mkanta & Uphold, 2006). Our previous qualitative research identified such barriers as fear and denial of HIV status, distrust of medical providers, lack of perceived need for care, substance use, and competing life priorities (Jenness, Hanna, & Murrill, 2007). In both MMP and NIC, fear and denial of status and lack of perceived need for care were the two most common reasons for delaying. One notable difference between the studies was that a higher proportion of NIC subjects reported lack of insurance as a barrier (36% vs. 5%). The timeframe of study participation relative to the diagnosis date may bias findings like these, because newly diagnosed persons may not be aware of the insurance options available to persons with HIV (Godwin et al., 2011). Yet, these findings indicate the possible inadequacy of current HIV test counseling to eliminate perceived barriers to care entry.

Assessment of study designs

An important methodological question is how study design influences prevalence estimates of delayed care entry and risk factors for this outcome. In Table 3, we summarize the main features of surveillance, prospective, and retrospective study designs, and here we review the key differences between them.

Sampling for surveillance-only and the NIC prospective design is similar: a population-based
Table 3. Comparison of HIV surveillance, prospective (NIC), and retrospective (MMP) study designs to assess linkage to care.

<table>
<thead>
<tr>
<th>Topic</th>
<th>HIV surveillance only</th>
<th>Prospective (NIC)</th>
<th>Retrospective (MMP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling & recruitment</td>
<td>Population-based sampling of diagnosed PLWHA possible based on standardized laboratory test reporting; no participant recruitment involved</td>
<td>Population-based sampling through HIV surveillance, with linkage status updated over time; participants recruited in window between HIV diagnosis and care entry</td>
<td>Institutional probability proportional to size sampling, with population limited to persons in care at interview; recruitment at point of medical care</td>
</tr>
<tr>
<td>Outcome measures</td>
<td>Care linkage defined through presence of CD4 cell count or VL data; may not be accurate measure of true care entry; overlap between sampling and outcomes timeframes</td>
<td>Care linkage defined through presence of CD4 cell count or VL data; care status confirmed through survey; linkage monitored over time through surveillance; overlap between recruitment and outcomes timeframes</td>
<td>Care linkage defined through historical diagnosis and care entry self-report; no overlap between recruitment and outcomes timeframes; underestimation of outcome through attrition of care delayers</td>
</tr>
<tr>
<td>Exposure measures</td>
<td>Standard demographics, transmission risk, geography, and testing provider type; limited or no psychosocial barriers measures; overlap with outcome measures timeframe</td>
<td>Wide range of demographics and other measures, including psychosocial barriers to care; all measures overlap with outcome measures timeframe</td>
<td>Several demographics and other measures, including psychosocial barriers to care; limited measures that overlap with the outcome measures timeframe</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Analysis may be integrated into routine case surveillance activities</td>
<td>Requires separate study design; population difficult to find and recruit in window period using surveillance-based data</td>
<td>Can be integrated into any large study of HIV-positive persons, but relevance of delay data depends on recency of diagnoses</td>
</tr>
<tr>
<td>Main strengths</td>
<td>Population-based analysis; efficiency</td>
<td>Population-based sampling; verified outcome measures; many exposure measures; adaptability</td>
<td>Probabilistic sampling; verified outcome measures; efficient recruitment and adaptability</td>
</tr>
<tr>
<td>Main weaknesses</td>
<td>Unverified outcome measures; limited exposure measures</td>
<td>Difficult recruitment; some barriers to care may be unknown to care-naive participants; inefficient method</td>
<td>Requires large sample; underestimation of outcome; no overlap between outcome and interview timeframe; limited overlap between exposure and outcome measures timeframes</td>
</tr>
</tbody>
</table>

AIDS Care 1245

Sampling frame of persons newly diagnosed with HIV who have not entered care is constructed based on laboratory and physician reports of diagnostic, CD4 cell count, and VL testing records. While no subject recruitment occurs in surveillance studies, prospective studies recruit potential subjects in the window period between delay status and care entry (Fagan et al., 2010). Other “prospective” designs that, similar to NIC, sample the care-naive population include cross-sectional studies of groups at high risk for delay like IDU and longitudinal studies initiated at the time of HIV diagnosis to examine who fails to enter care (Bell et al., 2010; Giordano et al., 2005). In the retrospective design, sampling and recruitment occurs among those who are currently in care, with the goal of assessing historical delay patterns (Samet et al., 1998).

For the outcome, surveillance studies usually rely on CD4 or VL test reports as proxy indicators of care entry, because only clinicians order those tests and they are routinely ordered upon care entry. Some surveillance studies also use secondary data, such as Ryan White program records, to refine outcome measurement (Meyerson, Klinkenberg, Perkins, & Laffoon, 2007). Persons without the proxy indicators within a defined interval (e.g., three months) are categorized as having delayed (Torian et al., 2008). The major limitation of surveillance studies is the uncertainty that this proxy is an accurate indicator of the true outcome, because ordering tests is neither a necessary nor a sufficient component of establishing care in all cases. The data may also be incomplete if there is underreporting. Surveillance studies may overestimate care delay because of these potentially inaccurate indicators (Bertolli et al., in press). In NIC, the outcome is initially defined through surveillance but then verified by self-report at interview. In the prospective design, the outcome is co-occurring with the sampling timeframe; in contrast, the outcome occurs before the sampling timeframe in the
retrospective design because the study sample is in care. This presents two problems for retrospective studies. First, they will underestimate delay if there is differential attrition through morbidity and mortality of persons who delayed. Second, there is a greater potential for misclassification of delay through mis-reported or missing care entry dates for persons with distal dates of diagnosis, as we found.

Exposure measures (i.e., risk factors) in surveillance studies are limited to those routinely collected in surveillance activities, such as demographic information and transmission risk. In contrast, because prospective and retrospective studies involve subject encounters, detailed measures may be collected, including psychosocial barriers to care. One difference, however, is that the timeframes of the exposure measures may not closely correspond to the timeframe of the outcome measure in the retrospective design because relevant exposure variables (e.g., substance use) tend to focus on recent history whereas the outcome may have occurred earlier. Again, there is a greater potential for recall bias for exposures measured in more distal time periods.

Finally, efficiency is an important consideration when comparing study designs. Surveillance studies are most efficient because they can be integrated into routine case surveillance activities. Prospective studies are least efficient because they require intensive recruitment of a target population that is often difficult to reach because they are not yet connected to services. In the California Bridge Project care linkage intervention, fewer than one-third of subjects were successfully linked and an average of 15 client contacts were required for those who were (Molitior et al., 2006). Successfully recruiting the care-naive depends on the quality of contact information available at sampling and the field staff's ability to track hard-to-reach populations in the window between the defined time points of delay and care entry. The retrospective design is often more efficient, since HIV-positive individuals may be recruited through ongoing medical services.

Limitations

Our empirical analysis is subject to at least three limitations. First, the response rates for both studies were low, introducing potential selection bias. This bias is important to consider when formulating future interventions, because recruitment challenges may be similar. Second, 15% of MMP study subjects had missing data on either their HIV diagnosis or care entry date, and those with missing data were more likely to be older at the time of diagnosis and to identify as heterosexual. These were two factors associated with delayed care entry in bivariate, but not multivariate, analysis. Recall of dates that occurred as much as two decades prior may be the underlying cause; targeting only the more recently diagnosed could be an approach for future studies. Finally, these data were collected through interviewer-administered surveys, which may introduce social desirability biases when reporting sensitive issues like injection drug use.

Conclusions

Linkage and engagement into HIV medical care are key components of the National HIV/AIDS Strategy; meeting the strategy benchmarks will ultimately improve individual-level health outcomes and reduce population-level HIV transmission (Millett et al., 2010). The National Institutes of Health have recently funded several research studies on how best to expand the “test and treat” concept to include the continuum of health needs for persons living with HIV, from testing to linkage to long-term retention in care (Meyerson et al., 2007; Mugavero et al., 2011; Torian & Wiewel, 2011). Interventions that address this continuum will likely need to address the multiplicity of individuals’ psychosocial and structural barriers to care. Future research on this issue, used to assess progress in meeting the national strategy objective, should continue to investigate how study design and measurement specification influence outcome estimates. In the end, a triangulation of estimates from varying designs will be necessary to evaluate our progress over time.

Acknowledgements

This research was funded by a cooperative agreement between the New York City Department of Health and Mental Hygiene and the Centers for Disease Control and Prevention (Grant #3U62-PS224452-04). The authors would like to acknowledge A.D. McNaughten and Jeanne Bertolli of the CDC for their contributions to the national MMP and NIC studies, James Hadler and Colin Shepard of the NYC DOHMH for reviewing earlier drafts of this paper, and all the efforts of the NYC MMP and NIC field staff.

References

